Elméleti rész:

négyzet oldalával

Kör olyan pontok halmaza egy síkban, amelynek távolsága a kör közepétől kisebb vagy egyenlő a kör sugarával. A kör által határolt terület, beleértve magát.

Kör egy kör részhalmaza, ez egy kör határa, az összes pont alkotja a kör szélét.

Kör ezért mindazok a pontok, amelyek hazudnak nem csak a körön, de a kört körülvevő belső térben is (lásd a képet - a kör piros színnel, a kör zöld színnel látható).

Bizonyos a körre vonatkozik kapcsolatok:

kör kerülete: o = 2 * r * π = π * d

kör tartalma: S = π * r 2 = π * d 2 / 4

kör alakú kivágás: S = 1 * r/2 vagy S = π * r 2 * alfa/360

Gyakorlati rész:

Számítsa ki egy 4 cm átmérőjű kör tartalmát.

A megoldás nagyon egyszerű. Csak annyit kell tennünk, hogy helyettesítjük a képlettel, azaz:

S = π * r 2 = π * d 2/4

S = 4 * π cm 2

Mekkora a sugara annak a körnek, amelynek tartalma 78,5 cm 2

Ezúttal a megoldás egy ismert képletből ismeretlen kifejezésből áll, azaz:

r = 5 cm

Kör alakú vágás 5 cm sugarú, állati szög 120 °. Számolja ki annak tartalmát.

Ez megint csak egy helyettesítés a képletben:

S = π * r 2 * alfa/360

S = 3,14 * 5 2 * 120/360

S = 26,2 cm 2

Egy négyzet fel van írva egy körbe. Fejezze ki a kör és az S négyzet tartalma közötti arányt. k /VAL VEL val vel :

Először rajzolunk egy képet, és leírjuk benne az egyes tartalmak kiszámításához szükséges adatokat:

A kör tartalmát ismert képlet alapján számoljuk ki VAL VEL k = π * d 2 / 4

Ismert összefüggés alapján kiszámítjuk a négyzet tartalmát is VAL VEL val vel = a 2

Ha arányosan vesszük őket, a következőket kapjuk:

Ezzel azonban még nem ért véget a számítás. Figyelje meg a képet. Mekkora pontosan egy kör átmérője egy négyzetben? Ez az ő átlója. És a Pitagorasz-tétel segítségével megtudhatjuk az átlóból, ill. fejezze ki, ami egyenlő a négyzet oldalával. Tehát kifejezhetjük egy kör átmérőjét egy négyzet oldalával:

a 2 + a 2 = u 2 = d 2

Ezt helyettesítjük az eredeti képlettel, amelyet levezetettünk, és megkapjuk belőle a végső kapcsolatot:

Ismétlés:

1. A két kör tartalma 4: 9 arányban van. A nagyobb kör átmérője 12 cm. Mekkora a sugara a kisebbnek? [4cm]

2. Számítsa ki a leírt háromszög 3, 4, 5 cm oldalú körének tartalmát. [19 625 cm2]